F35-72.5 kV DUAL GAS

Insulated Substations 72.5 kV, 31.5 kA, 2500 A, 50/60 Hz Compatible with SF₆ or g³ gas

Grid Solutions at GE Vernova has more than 50 years of experience in the design, material selection, development, engineering, manufacturing and servicing of gas-insulated substations (GIS).

Our F35 Dual-Gas GIS bay – compatible with either SF_6 or g^3 gas – meets the challenges of networks up to 72.5 kV for the following applications: offshore and onshore wind power generation, distribution, infrastructure and industrial applications.

Reduced carbon footprint

The F35g is available in a fully SF_6 -free version using g^3 technology, allowing for a 99% reduction in CO_2 -eq gas contribution to global warming while maintaining the same performance and ratings as SF_6 equipment. Its low mass reduces the impacts of the manufacturing phase on the environment, and its advanced sealing system and improved tightness minimize both gas leaks and the frequency of maintenance.

Modular and Versatile

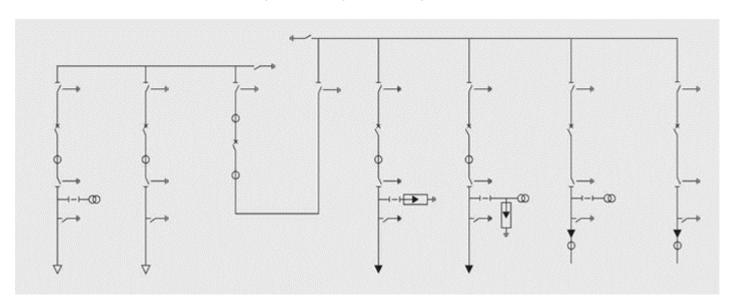
- Suitable for wind turbines as well as space-constrained and industrial substations
- High modularity enables complex layouts in a compact arrangement

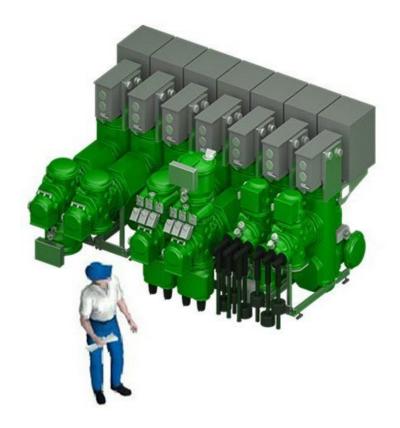
Lowest Cost of Land and Civil Works

- Bay volume reduced by 23% as compared to the previous generation and by 40% compared to our F35 Dual Gas 145 kV GIS
- · Compact GIS bay with a width of only 680 mm
- · Up to three bays assembled together, wired, tested, and shipped directly to site
- Simple on-site testing due to the disconnecting function of voltage transformers and surge arresters

The path to Decarbonization

- The F35g-72.5 kV SF₆-free GIS is part of our GRiDEA portfolio of solutions designed to accelerate the decarbonization of the grid
- Lower carbon footprint over a 40-year substation life cycle compared to the use of SF₆ products
- The gas contribution to global warming is reduced by 99% using g³ gas instead of SF₆
- First-in-class gas sealing system
- Same GIS footprint with SF₆ or with q³
- Tightness system improved by design with a reduction of the total sealing length of a factor of two in comparison to the previous version

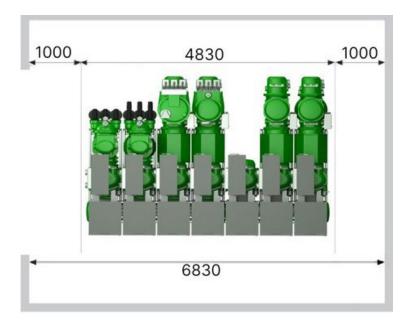

Smart Grid Features

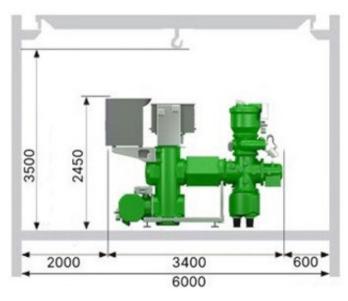

- Full digital monitoring, control and protection
- Digital power sensing using lowpower instrument transformers

Easy Upgrades

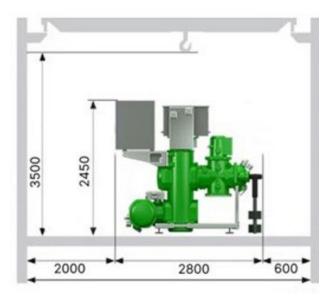
- Bays are completely factoryassembled, wired and tested before shipment
- Easily make the switch to SF₆-free whenever you're ready
- Similar operational and maintenance procedures as with SF₆ GIS for simple integration
- Compact design that's common to all substations, including extensions of existing substations
- State-of-the-art maintenance isolating device for separation of the surge arresters and/or voltage transformers avoiding gas operation or disassembly during on-site testing

F35 - 72.5 kV, 31.5 kA, 2 500 A - Single-line diagram of single busbar substation





Bay width: 680 mm


Also available:

- Other single-line diagrams
- Stand-alone control cubicles
- Specific layouts

Bay with cable box

Technical Specifications

<u> </u>			
GENERAL RATINGS			
Insulating and switching gas		g^3	SF ₆
Reference electrotechnical standards		IEC /IEEE	IEC / IEEE
ated voltage		72.5 kV	72.5 kV
Withstand voltages			
- Short-duration power-frequency, phase-to-earth / across isolating distance		140 / 160 kV	140 / 160 kV
- Lightning impulse, phase-to-earth / across isolating distance		325 / 375 kVp	325 / 375 kVp
Frequency		50 / 60 Hz	50 / 60 Hz
Continuous current		up to 2500 A	up to 2500 A
Short-time withstand current		31.5 kA	31.5 kA
Peak withstand current		85 kAp	85 kAp
Duration of short-circuit		3 s	3 s
Vibrations: IEEE-normalized seismic test at 1.0 g, inc	luding switching operations. Random vib	oration test acc. IEC at level 2M	4.
Installation		indoor/outdoor	indoor/outdoor
CIRCUIT-BREAKER RATINGS			
First-pole-to-clear factor	1.5 / 1.3	1.5 / 1.3	
Short-circuit breaking current	31.5 kA	31.5 kA	
Short-circuit making current	85 kAp	85 kAp	
Operating sequence	O - 0.3 s - CO - 3 min - CO / CO -	15 s - CO O - 0.3 s - CO	O - 3 min - CO / CO - 15 s - CO
Drive type (three-phase)	pure-spring	pure-spring	
Switching capacity	Class S2	Class S2	
Mechanical endurance	class M2	class M2	
Capacitive switching	class C2	class C2	
DISCONNECTOR AND LOW-SPEED EARTHING SWI	ГСН		
Capacitive current switching	0.1	A	0.1 A
Bus-transfer current switching capability	16	00 A / 10 V	1600 A / 10 V
Mechanical endurance	cla	ss M2	class M2
MAKE-PROOF EARTHING SWITCH			
Making current capability	85	i kAp	85 kAp
Switching capability - electromagnetic coupling) A / 2 kV	80 A / 2 kV
Switching capability - electrostatic coupling		A / 6 kV	2 A / 6 kV
Mechanical endurance	cla	ass M1	class M1

Gas Data

The functioning of this equipment relies upon SF_6 or a gas mixture based on CO_2/O_2 and 5% of an additive, C_4F_7N (also known as C_4 -FN or Iso- C_3F_7CN), a fluorinated greenhouse gas, which helps preserve dimensions and performance equivalent to those of SF_6 equipment while reducing the gas carbon footprint.

	SF ₆	g³	
		C ₄ F ₇ N additive**	g³ gas mixture
Average mass of gas/mixture in the equipment (kg)*	38.9	3.83	18.8
GWP ₁₀₀ of gas/mixture (CO ₂ -equivalent)	24,300	2,750	560
CO ₂ -eq of gas/mixture in the equipment (t _{co2-eq}) *	945.3	10.5	10.5

^{*} For information purposes only considering a typical GIS arrangement (double busbar cable bay). It varies depending on the equipment considered.

For more information visit gevernova.com/grid-solutions

Proprietary Information - This document contains GE Vernova proprietary information. It is the property of GE Vernova and shall not be used, disclosed to others or reproduced without the express written consent of GE Vernova, including, but without limitation, in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited. This presentation and the information herein are provided for information purposes only and are subject to change without notice. NO REPRESENTATION OR WARRANTY IS MADE OR IMPLIED AS TO ITS COMPLETENESS, ACCURACY, OR FITNESS FOR ANY PARTICULAR PURPOSE. All relative statements are with respect to GE Vernova technology unless otherwise noted.

 \odot 2024, 2025 GE Vernova and/or its affiliates. All rights reserved. GE and the GE Monogram are trademarks of General Electric Company used under trademark license.

^{**} This component's physical properties are essential to g³.