GRID SOLUTIONS

OMNI MU360 MODULARE PROZESS SCHNITTSTELLENEINHEIT

Ihre Brücke von der physischen zur digitalen Welt: Schnittstelleneinheit für digitale Umspannwerke

MU360 ist die Prozessschnittstelleneinheit (PIU) mit analogen und binären Schnittstellen für die vollständige Modellierung, Steuerung und Digitalisierung von Schaltanlagen unter Verwendung der Standards IEC 61850 und IEC 61869 sowie Protokollen wie Sampled Values (SV), GOOSE, MMS und PTP.

Die MU360 erschließt den vollen Nutzen eines vollständig digitalen Umspannwerks und kann als einzelne E/A-Schnittstelle für Schutz-, Automatisierungs- und Steuerungsanwendungen für Feld-IEDs dienen. Die Beschränkung der Feldverdrahtung auf die MU360 reduziert die Projektkomplexität durch Reduzierung von Kabeln, Klemmen und physischen Verbindungen, was in Kombination mit einem vollständigen Satz logischer Knoten eine Standardisierung des Designs der Schaltanlage ermöglicht. Feld-IEDs können Daten von redundanten MU360-Einheiten verwenden, was die Systemverfügbarkeit erhöht. Feld-IEDs können außerdem mithilfe der IEC 61850-Testmodi schnell ausgetauscht oder hinzugefügt werden, da keine Feldverdrahtung erforderlich ist. Die MU360 bietet den zusätzlichen Vorteil, dass es die StW-Leistung und -Kosten durch eine geringere Anschlusslast und eine Reduzierung der Anzahl der für eine Anwendung erforderlichen StW-Kerne verbessert.

Hauptvorteile

- Der kompakte Formfaktor unterstützt die Feldinstallation in Leistungsschalter- schränken, Rangierschränken und metallgekapselten Schaltanlagen.
- Zwei Steckplätze für StW/SpW-Analogkarten unterstützen die Anwendung auf Eineinhalb-Leistungsschalter-Leitungen, Doppelverteilungsfeldern und kombinierten Schutz- und Messinstallationen.
- 14 Steckplätze für E/A-Karten ermöglichen vielfältige Anwendungen. Einsatz als Merging Unit, Schaltanlagensteuereinheit oder PIU. Richtige Größe und Punktanzahl für alle Anwendungsarten.
- Optional schnelle Ausgangskontakte mit hoher Leistung für den direkten Betrieb mit Leistungsschaltern und Schaltanlagen.
- Bis zu 4 SV-Streams IEC 61869-9/IEC 61850-9-2 Ex 2.1-konform f
 ür Schutz-und Messprofile.
- Vollständige Integration in die digitalen Umspannwerke durch bis zu 6 SFP-Schnittstellen, Unterstützung für PRP- und HSR-Redundanzprotokolle für Verfügbarkeitsnetzwerke und IEEE 1588 Precision Time Protocol.
- Einfache Inbetriebnahme durch einfaches EnerVista Flex 2.0, simulierte abgetastete Werte (SV) und Testmodi, die über logische Geräte steuerbar sind, um mehrere Leistungsschalter und Trennschalter in einem MU360 zu integrieren.

Anwendungen

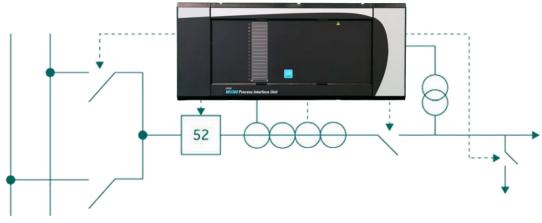
- Prozessschnittstelleneinheit (PIU) für die vollständige Digitalisierung von Feldern.
- Standalone Merging Unit (SAMU) für herkömmliche Messwandler.
- Schaltanlagensteuereinheit (SCU) für die Verbindung und Steuerung von Primärgeräten wie Leistungsschaltern und Trennschaltern.
- Feldeinheit für das dezentrale Sammelschienenschutzsystem GE B30X.
- Anwendungen zur Messung von Ertragsgenauigkeit und Stromqualität.
- Eineinhalb-Leistungsschalteranschlüsse mit einem einzigen PIU-Gerät.
- Zwei Abzweige in einem einzigen PIU-Gerät.

Modular und Leistungsstark

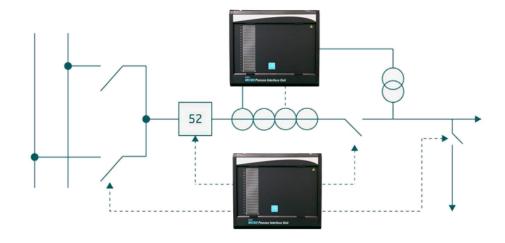
- MU360 ist ein modulares Gerät mit flexiblen 40TE- oder 80TE-Gehäusen und eignet sich perfekt als Ihre einzige Prozessschnittstelle in der Anlage.
- Bis zu 14 flexible Steckplätze für analoge Erfassung (Schutz und Messung) und binäre E/A, einschließlich High Speed High Break.
- Bis zu 18 StW/SpW-Anschlüsse.
- Zahlreiche Kombinationsmöglichkeiten bis zu 224 Binärein- oder bis zu 140 Binärausgänge.
- Eine einzige Box für Schutz-, Steuerungsund Automatisierungszwecke.

Sichere Schaltanlagen-Schnittstelle

- Spezielle IEC61850-Datenmodellierung für Leistungsschalter, Trenner sowie Strom- und Spannungswandler.
- Prozessschnittstelle zum Modellieren, Überwachen und Steuern von Geräten im Schaltanlagenbereich mithilfe von IEC 61850.
- Alle Verbindungen sind geschützt gemäß SL2 des IEC 62443-Designs.


Neueste Standards Konformität

- Robuste Hardware und Erfassung konform mit IEC 61869-13.
- Flexible Konfiguration für mehrere IEC 61869-9-Abtastwertprofile (SV).
- Konform mit Ausgabe 2.1 der IEC 61850-9-2.


Komplett und einfach

- Modernes, sauberes und einfaches IED-Konfigurationstool EnerVista Flex 2.0.
- Flexibler und vollständiger Satz logischer Knoten für Schutz, Steuerung und Automatisierung
- Intuitive Schnittstelle für Digitale Umspannwerkprojekte.

Prozessschnittstelleneinheit

SCU + SAMU

Flexibilität

Durch die Integration von Binäreingängen, Binärausgängen und Analoganschlüssen in einer Box bietet die MU360 eine kostengünstige Lösung für eine Vielzahl von Feldkonfigurationen. Pro Box können bis zu zwei Busse und zwei Leitungen mit einer flexiblen Konfiguration von bis zu 224 Binäreingängen oder 140 Binärausgängen überwacht werden.

Zuverlässig, interoperabel und zukunftssicher

Die MU360 entspricht den wichtigsten Normen für digitale Umspannwerke IEC 61869-9, IEC 61850 Ausgabe 2.1 und IEC 61869-13, was ihre Interoperabilität und Konformität mit den Anforderungen an die physische und digitale Schnittstelle moderner digitaler Umspannwerke garantiert. Darüber hinaus können Messungen jedes StW/SpW-Sets in Schutz- und Leistungsqualitätsprofilen übertragen werden, sodass mehrere Schutz-, Automatisierungs- und Steuerungsanwendungen die Daten nutzen können, ohne dass für die Erfassung zusätzlicher Platz erforderlich ist.

Test Modes

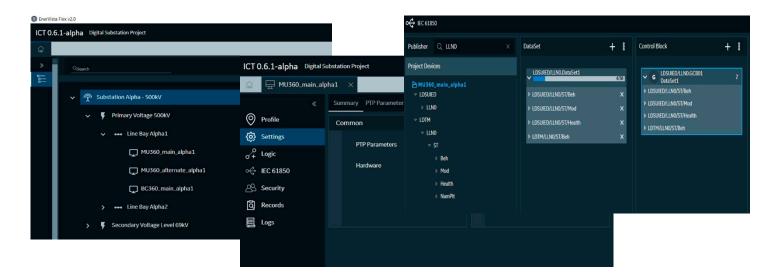
IEC 61850 Edition 2.1 bietet Standardmechanismen für Testzwecke, die die Komplexität der Inbetriebnahme verringern und die Installation neuer Felder ermöglichen, ohne den Betrieb der Unterstation zu beeinträchtigen.

Mit den Testmodi in MU360 können Benutzer Modus und Verhalten jedes logischen Geräts unabhängig konfigueren und es dann in den folgenden Modi betreiben: Ein, Test, Blockiert, Test/Blockiert und Aus.

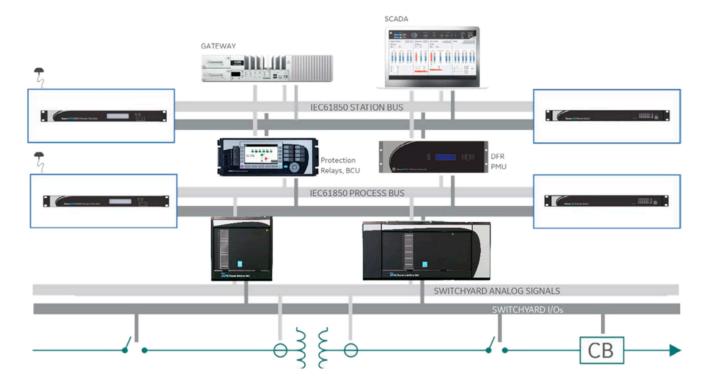
Ein sichereres und cybersicheres Umspannwerk

Die digitale Übertragung der Messwerte der Messwandler über Glasfasern eliminiert das Risiko einer unbeabsichtigten Fehlbedienung der Strom- und Spannungskreise und macht den Relaisraum zu einer sichereren Arbeitsumgebung, da Gefahren ausgeschlossen und das Verletzungsrisiko verringert werden.

Um sicherzustellen, dass MU360 über all diese Konnektivität cybersicher verfügt, wurde es gemäß IEC 62443 entwickelt und verfügt über alle in SL2 dieser Norm beschriebenen Funktionen, einschließlich RBAC, sicherem Booten und signierter Firmware.


Reduzieren Sie den Engineering-Aufwand und die Kosten

Die Verwendung des Prozessbusses mit dem MU360 reduziert den Bedarf an Gräben, Kanälen, Verschraubungen, Kabelkanälen und Kupferverdrahtung drastisch, da die Informationen zwischen den IEDs über Glasfaserkabel und Ethernet-Switches ausgetauscht werden.


Weniger zu verwaltende Kabel bedeuten auch eine geringere technische Komplexität, da umfangreiche Schaltpläne durch standardisierte, versionskontrollierte Konfigurationsdateien ersetzt werden. Zukünftige Neukonfigurationen werden automatisch vom IED-Konfigurationstool dokumentiert.

Leistungsstarkes Konfigurator-Tool EnerVista Flex 2.0

MU360 unterstreicht seine Modernität durch sein IED-Konfigurationstool (ICT) EnerVista Flex 2.0, das auf moderner Technologie und Benutzeroberfläche basiert und die Konfiguration von Umspannwerken mit einer ganzheitlichen Ansicht in wenigen Klicks ermöglicht.

Beispielanwendung der IEC 61850-Architektur

Funktionen und IEC61850-Datenmodellierung

Einer der wichtigsten Fortschritte von IEC 61850 ist die Möglichkeit, IEDs durch Elemente wie logische Knoten und Steuerblöcke zu standardisieren. Die Hauptfunktionen, die MU360 in dieser Hinsicht unterstützt, sind:

LN GRUPPE	LOGICAL KNOTEN	BESCHREIBUNG
Logische Systemknoten (L)	LLNO, LPHD, LCCH, LGOS, LTIM, LTMS, LTRK, LSYN*, LSET, LPDI*, LPDO*, LPAI*, LMBI*, LMSI*, LPLD*	Systeminformationen und Verhalten
Steuerung (C)	CALH, CSYN	Steuerelemente für Alarm- & Synchronisierungsbedingungen
Funktionale Blöcke (F)	FXOT, FXUT	Funktionsblöcke für Über- und Unterschreitung der Grenzwerte
Allgemeine Funktionen (G)	GAPC, GGIO	Generischer Automatisierungsprozess und E/A
Archivierung (I)	ISAF	Sicherheitsalarmfunktion
Nicht elektrische Primärgeräte (K)	KPMP, KFAN,	Nicht elektrische Primärgeräte Zusammenhang wie Pumpe
Schutzfunktionen (P)	PTRC, PTOC	Logische Knoten, die Schutzfunktionen von Relais darstellen
Schutzbezogene Funktionen (R)	RBRF	Schutzfunktion in Bezug mit Leistungsschalterausfall
Supervision und Monitoring (S)	SIMG, SIML, SBAT, SFIR	Überwachung von Gas, Flüssigkeiten, Batterien und Feuer
Messwandler und Sensoren (T)	TCTR, TVTR	Darstellung der Messwandler (SpW/StW)
Schaltanlagen (X)	XCBR, XSWI, XCMD*	Schaltanlagen als Leistungsschalter und Trenner
Weitere Stromversorgungsausrüstung (Z)	ZAXN, ZBAT, ZBTC, ZCON, ZGEN	Andere Geräte in Stromversorgungssystemen wie Batterien und Generatoren

^{*} Erweiterte logische Knoten

Technische Spezifikation

UMGEBUNGSBEDINGUNGEN SPEZIFIKATION			
Betriebstemperaturbereich	-25°C (-13 °F) + 55°C (+131°F)		
Geprüft nach IEC 60068-2-1: 2013	-25°C (-13°F)		
Geprüft nach IEC 60068-2-2: 2013	+70°C (+158°F)		
Vorübergehend_zulässige	-25°C (-13°F) + 70°C (+ 158°F)		
Temperatur im Betrieb	(Geprüft für 96 Std. mit 50% der binären E/A ständig aktiviert)		

GERÄTEABMESSUNGEN		
Höhe	177.8 mm/7 inches (4 U)	
Breite	203 mm/8 in (40TE) 406, mm/16 in (80TE)	
Depth	203 mm/8 in	

SPEZIFIKATIONEN DER STROMVERSORGUNG BIU261S			
Betriebsnennspannung	48 to 250 VDC, 110- 240 Vac		
Betriebsspannungsbereich	40 to 300 VDC		
Einschaltstrom	19.4 A @ 110 VDC für 110 ms		
	43.8 A @ 220 VDC für 92 ms		
Stromverbrauch 38.7 W @ 220 VDC			
	38.5 W @ 110 VDC		
Isolierung	> 100 M? bei 500VDC		
Durchschlagsfestigkeit	2.2 kV - 60 Hz für 1 minute		

SPEZIFIKATIONEN DER DIGITALEN EINGÄNGE				
Schalt- spannung	Eingangs-ngs spannung	Ansprech- schwelle	Abfall- schwelle	Nenn-leistung
A01	24 VDC	10 VDC	8 VDC	0.077 W
A02	48 VDC - 60 VDC	17.4 VDC	12.5 VDC	0.14 W
A03	110 VDC - 125 VDC	50 VDC	29.9 VDC	0.26 W
A04	220 VDC	86 VDC	67 VDC	0.42 W
A07	110 VDC - 125 VDC mit 80% Schwelle	86 VDC	67 VDC	0.26 W
A08	220 VDC mit 80% Schwelle	176 VDC	132 VDC	0.42 W

SPEZIFIKATIONEN FÜR BINÄRE AUSGANGSKONTAKTE				
Beschreibung	Werte			
Schaltspannung	24 bis 250 VDC/230 VAC			
Max. Dauerstrom	5 A			
Einschaltvermögen	5 A dauernd			
(Nenneinschaltstrom)	30 A für 500 ms (öffnen für 40 s nachher) oder 250 A für 30 ms			
Zeit gewinnen	< 7 ms			
Ausschaltvermögen	Ausschaltvermögen für 100 000 Operationen: DC: 150 W resistiv, 15 W induktiv (L/R = 20 ms) AC: 1500 VA resistiv			
	Ausschaltvermögen reduziert bis 90 000 Operationen: AC: 1500 VA induktiv (Leistungsfaktor = 0.7)			
	Ausschaltvermögen bestätigt nach 10 000 Operationen (Kontaktwiderstand immernoch niedriger als 250 ΜΩ):			
	DC: 30 W induktiv (L/R = 40 ms)			
Durchschlagsfestigkeit der Spule und der Kontakte	5000 VAC			
Isolierung	2.2 kV (CM) AT 60 Hz für 1 minute			
8 einpolige Relais	Schließer			
2 zweipolige Relais	1 Wurzel für 2 Ausdgangskontakte (S/Ö Wechsler)			
Anzahl der Betätigungen	Unbelasteter Kontakt: > 100 000			
	Belasteter Kontakt: >10 000			

Beschreibung	Werte
Nennbetriebsspannungsbereich	Bis zu 250 VDC/250 VAC + 20%
Betriebsstrom (stationärer Strom)	Einpolig: 10 × 10 A bei 55°C Zweipolig: 5 × 16 A bei 40°C
Einschaltvermögen (Nenn-Einschaltstrom)	33 A für 3 s
Max. Einschaltstrom	100 A für 30 ms
Schließzeit	< 0.5 ms
I²t Verhältnis	300 A²/s
Kontaktwiderstand	Schließer: 33 mΩ
	Betriebsstrom: 10 mΩ
Ausschaltvermögen	Ausschaltvermögen für 10 000 Operationen: DC: 7500 W resistiv, 2500 W induktiv (L/R = 40 ms) AC: 7500 W resistiv 2500W induktiv
Anzahl der Operationen	Unbelasteter Kontakt: > 100 000 Belasteter Kontakt: > 10 000
Isolation	2.2 kV (CM) bei 50 Hz für 1 minute, 5 kV Impuls

ANALOGE STROMEINGÄNGE (MESSPROFIL)			
Beschreibung	Werte	Werte	
Modell	1A	5A	
Nennstrom AC (In)	1 A _{RMS}	5 A _{RMS}	
Minimal messbarer Strom bei gleicher	12,5 mA @ 0.4% Error und 20'	62,5 mA @ 0.4% Error und 20'	
Genauigkeit	(0,0125 In 0.4% Error und 20'	(0,0125 In 0.4% Error und 20')	
Maximal messbarer	50 mA - 2 A @ 0.2% Error und 10'	250 mA - 10 A 0.2% Error und 10'	
	(0.05 ln - 2 ln 0.2% Error und 10)	(0.05 ln - 2 ln 0.2% Error und 10')	
Frequenz	50 or 60 Hz ± 10%	50 or 60 Hz ± 10%	
Überlast	* 2,5 A dauernd	* 2,5 A dauernd	
	* 10 A @ 5 s	* 50 A @ 5 s	
	(2.5 In dauernd 10 In @ 5 s	(2.5 In dauernd 10 In @ 5 s	

ANALOGE STROMEINGÄNGE (SCHUTZPROFIL)			
Beschreibung	Werte	Werte	
Modell	1A	5A	
Nennstrom AC (In)	1 ARMS	5 ARMS	
Minimal messbarer Strom bei gleicher	200 mA - 800 mA @ 0.4% Fehler und 20'	1 A - 4 A @ 0.4% Fehler und 20'	
Genauigkeit	(0,2 - 0,8 ln 0.4% Fehler und 20'	(0,2 ln - 0,8 ln 0.4% Fehler und 20')	
Maximal messbarer Strom	800 mA - 2 A @ 0.2% Fehler und 10'	4 A - 10 A @ 0.2% Fehler und 10'	
	(0.8 ln - 2 ln 0.2% Fehler und 10)	(0.8 ln - 2 ln 0.2% Fehler und 10)	
	2 A - 30 A @ 1% Fehler und 2° (120')	10 A - 150 A @ 1% Fehler und 2° (120')	
	(2 In - 30 In 1% Fehler und 2° (120')) 30 A - 60 A @ 6TPM10-180	(2 In - 30 In 1% Fehler und 2° (120')) 150 A - 300 A @ 6TPM10-180	
	30 In - 60 In (6TPM10-180)	30 ln - 60 ln (6TPM10-180)	
Frequenz	50 or 60 Hz ± 10%	50 or 60 Hz ± 10%	

ANALOGE SPANNUNGSEINGÄNGE		
Beschreibung	Werte	
Nennspannung AC	Phasenspannung: 2 V - 240 V	
Messbarer Bereich	2 V - 20 V @ 0.4% Fehler - 20'	
20 V - 200 V @ 0,2% Fehler - 10'		
	200 Vn - 240 Vn	
Überlastfestigkeit	2.4 Vn dauernd	
	2.6 Vn @ 10 s	

SPEZIFIKATION DER OPTISCHEN ETHERNET-PORTS (6 PORTS)		
Schnittstelle	1000 BASE-LX	
Bitrate	1000 Mbps	
Welllenlänge	1300 nm	
Anschluß	LC	
Glasfasertype	monomode 1310 nm	
Emission Leistung	-20 dBm	
Empfindlichkeitz	-32 dBm	
Maximal anwendbare Leistung	-14 dBm	

Sicherheitsrelevante Prüfungen

TEST	TEST STANDARD	TESTNIVEAU
Impulsspannung	IEC 60255-27:2013	5 kV, 1.2/50 μs, 0.5 J
Dielektrische Spannung	IEC 60255-27:2013	2.2 kV rms, 1 minute
Isolationswiderstand	IEC 60255-27:2013	> 100 MΩ, 500 V
Schutzhafter Klebewiderstand	IEC 60255-27:2013	< 0.1 Ω at 20 A

Mechanische Prüfungen

TEST	TEST STANDARD	TESTNIVEAU
Vibrationen	IEC 60255-21-1: 1988	Class 1
Erschütterung	IEC 60255-21-2: 1988	Class 1
Stoß	IEC 60255-21-2: 1988	Class 1
Seismik	IEC 60255-21-3: 1993	Class 1

Klimaprüfungen

TEST	TEST STANDARD	TESTNIVEAU
Kältetest – in Betrieb	EN 60068-2-1: 2007	Test Ad - 25°C, 96 hrs
Kältetest - Lagerung	EN 60068-2-1: 2007	Test Ab - 40°C, 96 hrs
Trockenhitzetest - in Betrieb	EN 60068-2-2: 2007	Test Bd + 70°C, 96 hrs
Trockenhitzetest - Lagerung	EN 60068-2-2: 2007	Test Bb + 70°C, 96 hrs
Temperaturänderung	EN 60068-2-14: 2009	Test Nb - 25°C to + 55°C
Feuchte Wärme zyklisch	EN 60068-2-30: 2005	Test Db + 55°C, 93% RH + 25°C, 97% RH 6 Tage
Feuchte Wärme im Dauerzustand	EN 60068-2-78: 2013	Test Ab + 40°C, 93% RH 10 Tage
Gehäuseschutz	IEC 60529: 2013	IP40 Frontseite IP20 Seitlich IP20 Rückseite

Tests der DC-Hilfsversorgung

TEST	TEST STANDARD	TESTNIVEAU
Einschaltstrom	IEC 60255-1: 2009 Sub-clause 6.10.4.3	110 VDC, I < 19.4 A, T < 110 ms 220 VDC, I < 43.8 A, T < 92 ms
Gleichspannungs- unterbrechung unterbrechung und -einbrüche	IEC 61000-4-29: 2000	ΔU 100% für 50ms ΔU 30% für 100ms ΔU 60% für 100ms
Umgekehrte Polarität	IEC 60255-27: 2013 Sub-clause 10.6.6	Polarität- für das untere Potential der Versorgung Polarität + für das untere Potential der Versorgung
Spannungswelligkeit bei Gleichstrom	IEC 61000-4-17: 1999	15 % des DC-Nennwerts, 100Hz
Allmähliches Herunterfahren/ Anfahren	IEC 60255-26: 2013	Abschaltrampe 60 s Ausschalten 5 min Anfahrrampe 60 s

Elektromagnetische Kompatibilität (EMC) Tests

TEST	TEST STANDARD	TESTNIVEAU
Strahlungsemission	CISPR 11: 2010	Class A 30 MHz bis 230 MHz 50 dB (µV/m) quasi peak bei 3 m 230 MHz bis 1 000 MHz 57 dB (µV/m) quasi peak bei 3 m
	CISPR 22: 2008	Class A 1 GHz bis 3 GHz 56 dB (µV/m) Durschschn 76 dB (µV/m) Spitze bei 3m 3 GHz bis 6 GHz 60 dB (µV/m) Durschschn 80 dB (µV/m) Spitze bei 3m
Leitungsemissionen	CISPR 22: 2008	Class A 0.15 MHz bis 0.5 MHz 79 dB (uV) quasi peak 66 dB (uV) Durchschn 0.5MHz bis 30MHz 73 dB (uV) quasi peak 60 dB (uV) Durchschn
Elektrostatische Entladung	IEC 61000-4-2: 2008	Level 4: 8 kV Kontakt/15 kV Luft
Strahlungsimmunität	IEC 61000-4-3: 2006	80 to 2700 MHz 10 Vrms @ 1 kHz 80% AM Stichproben bei 80, 160, 380, 450, 900, 1850, 2150 MHz
lmmunität gegen schnelle Störgrößen	IEC 61000-4-4: 2012	Level 4: 4 kV 5 kHz und 100 kHz
Überspannungs- immunität	IEC 61000-4-5: 2005	Level 4: 4 kV (Leiter-Erde) 2 kV (Leiter-Leiter)
Leitungsgebundene Immunität	IEC 61000-4-6: 2008	10 Vrms @ 1 kHz 80% AM 150 kHz bis 80 MHz Stichproben bei 27 MHz, 68 MHz
Netzfrequenz Magnetfeld	IEC 61000-4-8: 2009	100A/m dauernd 1000A/m kurzzeit (3 Sekunden)
Netzfrequenz	IEC 61000-4-16: 1998	30 A/m dauernd 300 A/m 10s
Gedämpfte Schwingungswelle Schwingungswelle	IEC 61000-4-18: 2006	Level 3: 1 kV (Leiter-Leiter) 2.5 kV (Leiter-Erde) 100 kHz and 1 MHz

© 2024 GE Vernova und/oder seine Tochtergesellschaften. Alle Rechte vorbehalten.

 ${\tt GE}$ und das ${\tt GE-Monogramm}$ sind ${\tt Marken}$ der General Electric Company, die unter einer Markenlizenz verwendet werden.

